Measurement

Volume is the amount of s \qquad occupied by a \qquad -dimensional object as measured in cubic units (as mL or cm^{3}).

How to find the . . .

Volume of a liquid: place the 1 \qquad in a g \qquad cylinder and read the unit markings.
Measure from the bottom on the m \qquad .
The meniscus is the curve in the upper surface of a liquid close to the surface of the container or another object, caused by s \qquad tension.

Volume of a regularly shaped rectangle:

Measure the length, width, and height. \qquad x \qquad x \qquad

Volume of an irregularly shaped solid:

1. Find ag \qquad cylinder or b \qquad big enough to fit the object.
2. Place enough w \qquad in the cylinder so that it will cover the o \qquad when placed in it.
3. Record the v \qquad of water
4. Gently s \qquad the object into the cylinder
5. Record the new volume of water
6. Subtract the original volume of water $\# 3$ from the new volume $\# 5$, this is the volume of the object

Measurement

Volume is the amount of space occupied by a three-dimensional object as measured in cubic units (as mL or cm^{3}).

How to find the . . .

Volume of a liquid: place the liquid in a graduated cylinder and read the unit markings.

Volume of a regularly shaped rectangle:
Measure the length, width, and height. L x W x H

Volume of an irregularly shaped solid:

7. Find a graduated cylinder or beaker big enough to fit the object.
8. Place enough water in the cylinder so that it will cover the object when placed in it
9. Record the volume of water
10.Gently slide the object into the cylinder
11.Record the new volume of water
10. Subtract the original volume of water \#3 from the new volume \#5, this is the volume of the object

