Self Check Astronomy: Life Cycle of a Star

1.	What is the difference between a proto star and an actual star?		
	a. Star is biggerb. Nuclear fusion is in the star only		
	c. Proto star will turn into a brown dwarf		
	d. Star is cooler		
	d. Star is cooler		
2.	What two forces keep a star in balance/equilibrium? Circle Two		
	a. Gravity		
	b. Centripetal Force		
	c. Force from explosion due to nuclear fusion		
	d. Vectors		
3.	Our star will turn into a when it dies.		
	a. Pulsar		
	b. Magnetar		
	c. Black Hole		
	d. White Dwarf		
4.	What determines how a star will die?		
	a. Gravity		
	b. Mass		
	c. Force		
	d. Pink Flamingos		
5.	How much starting solar mass do you need to make a black hole?		
	a. 1		
	b. 8		
	c. 10		
	d. 25		
6.	How much starting solar mass do you need to make a neutron star?		
	a. 1		
	b. 8-25		
	c. 25 or more		
	d. 100		
7.	How much starting solar mass do you need to make a white dwarf?		
	a. Less than 8		
	b. 8-25		
	c. More than 25		
	d. 100		
8.	forms around a white dwarf when it dies?		
	a. Super nova		
	b. Planetary nebula		
	c. Dark nebula		
	d. Nothing will		

9.	a. b. c.	oto star runs out of a source of matter, it will turn into a Black dwarf Brown dwarf White dwarf Pink dwarf
10.	a. b. c.	a star runs out of hydrogen and starts "burning" helium it will Swell to a white dwarf Swell to a blue giant Swell to a red giant Swell to a yellow giant
11.	a. b. c.	can't fuse past which element? Carbon Oxygen Lithium Iron
12.	a. b. c.	ooon of neutron star will weigh 1 ton A pound 10, 000 pounds Billions of tons
		ron star is made completely of
15.	a. b. c.	urce of a star's energy is Nuclear fusion Nuclear fission Heat Light
	a. b. c. d.	ron's star size is about Size of Earth About 10-15 km across 1 inch across Size of Jupiter you walk on the surface of a neutron star?
		ou see a supernova explosion in another galaxy? f False. Our sun will end in a supernova explosion
		rce that stops a neutron star from collapsing further is
_0.		Weak nuclear force
		Strong nuclear force
		Gravity
		Centripetal force

21. Respond to the statement: "We are made from star dust."