Scientific Method Overview

The scientific method is a way of telling the truth from lies or delusions.

The scientific method is an organized way to figure something out.

The scientific method is a way to ask and answer questions by making observations and doing experiments.

The scientific method is a technique for investigating and getting new knowledge, or correcting and integrating previous knowledge.

The four parts of the scientific method are:

- 1. Framing the Investigation
 - A. Make an observation
 - B. Ask a question
 - C. Research the subject
 - D. Form a hypothesis

2. Designing the Experiment

- A. To test the hypothesis
- B. Must be safe
- C. Must be testable
- D. Correctly use equipment
- 3. Collecting and Presenting Data
 - A. Notes (field notes)
 - B. Data Table
 - C. Units
 - D. Graph (visual representation)

4. Analyzing and Interpreting Results (The Conclusion)

- A. Check and USE data
- B. Check problem statement and hypothesis
- C. Include observations
- D. Synthesize data
- E. Answer the prediction, question or hypothesis

Framing the Investigation:

Step #1: Make An Observation

- 1. Observations: use our senses to gather information about the problem, and record FACTS! Only the FACTS!
- 2. Inferences: logical interpretations based on observations.
- 3. Predictions: what we think will happen in the FUTURE based on our observations and inferences.

Step #2: Ask a Question (Problem Statement)

- 1. Think what must be fixed or solved?
- 2. Be concise, specific and clear. Who? Which? What? When? Where? Why? How?
- 3. The question must be phrased in a way that is answerable and measurable.
- 4. There can be only 1 major idea presented in the question.

Step #3. Background Information: Research and Observations

- 1. Take time to gather information about the situation or problem
- 2. Sources: textbooks, references, experts, reliable Internet sources, creditable universities, professional journals, etc...
- 3. Carefully read and collect information, document your sources

Step #4. Hypothesis

A hypothesis is a possible solution to a problem that is testable.

Components:

"IF. . . " this is the condition or the situation; what you are going to do.

<u>"Then...</u> the expected results; what happens in response to the "IF"

"Because . . . " this is the scientific reason why the "If" caused the "Then"

Designing the Investigation

Purpose: to test the hypothesis and solve the problem or answer the question.

Variables

- 1. Manipulated/Independent Variable (MV or IV): the variable that is purposely changed to test the hypothesis. (Input or cause)
- 2. Responding/Dependent Variable (RV or DV): The factor that may change in response to the manipulated variable. (Output or effect)\
- 3. Constant/Control Variable: What is constant or unchanged in an experiment, allows you to tell if the MV caused the change.

Lab Write-Up

- 1. List equipment and materials needed for the investigation.
- 2. Identify safety needs and safety equipment in the lab. Also mention safety needs of equipment.
- 3. Diagram of lab set-up that is labeled.
- 4. Procedure is written in a step format 1, 2, 3... a sequence that is understandable and can be replicated.

Collecting and Presenting Data

Purpose: To record data in a way that can be easily understood and show patterns and relationships.

Criteria

- 1. Collect data that is consistent with the lab design.
- 2. Record relevant and accurate data in an organized way.
- 3. Display data to support analysis.

Ways to Display Data

- Field Notes/Observations: Detailed, explicit, neat; words and drawings as are appropriate. (Journaling)
- 2. Data Table: Collect and display data (Example)

Manipulated Variable	Trial 1	Trial 2	Trial 3	Average

- 3. Graphs: Show Patterns and Trends (data in a picture format)
 - A: Bar Graph: Compare things between different groups.
 - B: Pie Chart: Compare parts to a whole.
 - C: Shows changes over time.

Types of Data

Qualitative Data	Quantitative Data	
 Deals with descriptions 	• Deals with numbers	
• Observed but not measured with traditional	• Data that can be measured	
lab equipment		
• Examples: textures, smells, appearances,	• Examples: mass, volume, temperature,	
feelings, color	height, time	
• Qualitative> Quality	• Quantitative> Quantity	

Analyzing and Interpreting Results: The Conclusion

Purposes: A conclusion paragraph contains a description of the purpose of the experiment, a discussion of your major findings, an explanation of your findings, and recommendations for further studies.

Criteria: Present and relate the investigation results to the hypothesis.

Six Steps of writing a Conclusion (write in paragraph form)

- 1. Yes/No answer if the hypothesis was supported or not.
- 2. Summarize the hypothesis, don't just restate it!
- 3. Use data to support your conclusion, if the hypothesis was correct or not. Interpret, and synthesized the data.
- 4. Identify possible errors that influenced the experiment and how they affected the lab data.
- 5. Identify ways to eliminate these errors.
- 6. Suggest ways to improve upon the experiment, or to further test it.

Writing a conclusion - Sentence frames

Step	Possible sentence frames (sentence starters)
1	"The hypothesis <u>was/was</u> not supported."
2	"The purpose of the experiment was to investigate the effect of the (IV) on the (DV)"
3	"The hypothesis that (insert hypothesis) was (supported/partially supported / not supported) by the data (use/explain data)."
4	"Errors in this experiment include these effected the lab by
5	"To eliminate these errors "
6	"Future experiments should because / this would show" "The experiment could be improved by"