\qquad Date: s Lab

Elliptical Orbits Lab

Purpose: To study the properties of ellipses and to compare the shapes of the planet's orbits.
Procedures: Work with your partner, alternating jobs . . .

1. Read the entire lab procedure sheet before beginning.
2. As you do the lab record data in the table below.
3. Use the data to answer all questions.

Data Table A

Ellipse \#	Focal Distance (cm)	Major Axis (cm)	Eccentricity $F D \div M A$
1			\div
2			$\div \ldots$
3			$\div+$
4			\ldots

Data Analysis

1. How many foci are needed to draw an ellipse?
2. All the planet's orbits are elliptical. What is at one foci of the ellipses' of the planets?
3. What two measurements are needed to calculate eccentricity?
4. What does increasing the focal

Data Table B

Planet	Eccentricity	Rank
Mercury	0.206	
Venus	0.007	
Earth	0.017	
Mars	0.093	
Jupiter	0.048	
Saturn	0.056	
Uranus	0.047	
Neptune	0.008	
Pluto	0.247	

5. Is an ellipse with a higher eccentricity number rounder or flatter?
6. Using Table B, list the planets from highest -9 to the lowest- 1 eccentricity.
7. Earth's orbit is closest in shape to which ellipse that you drew?
8. Does Earth's orbital path look more like an ellipse or a circle? Circle Answer
9. Pluto's orbit is closest in shape to which ellipse that you drew?
10. Does Pluto's orbital path look more like an ellipse or a circle? Circle Answer

Name: \qquad Date: \qquad Period: \qquad

Elliptical Orbits Lab

Purpose: To study the properties of ellipses and to compare the shapes of the planet's orbits.
Procedures: Work with your partner, alternating jobs . . .

1. Read the entire lab procedure sheet before beginning.
2. As you do the lab record data in the table below.
3. Use the data to answer all questions.

Data Table A

Ellipse \#	Focal Distance (cm)	Major Axis (cm)	Eccentricity $F D \div M A$
1			$-\quad \div$
2			$\div=$
3			$\div=$
4			$\div=$

Data Analysis

1. How many foci are needed to draw an ellipse?
2. All the planet's orbits are elliptical. What is at one foci of the ellipses' of the planets?
3. What two measurements are needed to calculate eccentricity?
4. What does increasing the focal

Data Table B

Planet	Eccentricity	Rank
Mercury	0.206	
Venus	0.007	
Earth	0.017	
Mars	0.093	
Jupiter	0.048	
Saturn	0.056	
Uranus	0.047	
Neptune	0.008	
Pluto	0.247	

5. Is an ellipse with a higher eccentricity number rounder or flatter?
6. Using Table B, list the planets from highest-9 to the lowest-1 eccentricity.
7. Earth's orbit is closest in shape to which ellipse that you drew?
8. Does Earth's orbital path look more like an ellipse or a circle? Circle Answer
9. Pluto's orbit is closest in shape to which ellipse that you drew?
10. Does Pluto's orbital path look more like an ellipse or a circle? Circle Answer
