Atomic Structure Answers

1. The Atomic Number of an element shows the number of: Protons
2. The Atomic Mass of an atom shows the number of: Protons + Neutrons
3. The number of Neutrons can be calculated by taking the Atomic Mass and subtracting the Atomic Number.
4. Protons have a positive charge and electrons have a negative charge.
5. Atoms are usually neutral (they have an equal number of positive and negative charges). Therefore, the number of protons is equal to the number of electrons in an atom.

Element Name	Element Symbol	Atomic Number	Atomic Mass	Number of Electrons	Number of Protons	Number of Neutrons
Oxygen	O	8	16	8	8	8
Carbon	C	6	12	6	6	6
Hydrogen	H	1	1	1	1	$\underline{0}$
Nitrogen	N	7	14	7	7	7
Calcium	Ca	20	40	20	20	20
Phosphorus	P	15	31	15	15	16
Chlorine	Cl	17	35	17	17	18
Magnesium	Mg	12	24	12	12	12
Silicon	Si	14	28	14	14	14
Potassium	K	19	39	19	19	20
Strontium	Sr	38	88	38	38	50
Francium	Fr	87	223	87	87	136
Xenon	Xe	54	131	54	54	77

Find answers with the Periodic Table on the 2nd page or here: http://www.ptable.com/

$\begin{gathered} \text { hydrogen } \\ 1 \\ \text { H } \\ 1 \end{gathered}$																		$\begin{gathered} \text { helium } \\ 2 \\ \text { He } \end{gathered}$	
1.0079																		4.0026	
$\begin{gathered} \text { lithium } \\ 3 \end{gathered}$	$\begin{gathered} \text { beryllium } \\ 4 \end{gathered}$												$\begin{gathered} \hline \text { boron } \\ 5 \end{gathered}$	$\begin{gathered} \text { carbon } \\ 6 \end{gathered}$	$\begin{aligned} & \text { nitrogen } \\ & 7 \end{aligned}$	$\begin{gathered} \text { oxygen } \\ 8 \end{gathered}$	$\begin{aligned} & \text { fluorine } \\ & 9 \end{aligned}$	$\begin{aligned} & \text { nean } \\ & 10 \end{aligned}$	
-													B	C	N	0	F	Ne	
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180	
$\begin{gathered} \text { sodium } \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { magnesium } \\ 12 \end{gathered}$												aluminium 13	$\begin{gathered} \text { silicon } \\ \hline \end{gathered}$	phosphorus 15	$\begin{gathered} \text { sulfur } \\ 16 \end{gathered}$	chlorine 17	$\begin{aligned} & \text { argon } \\ & 18 \end{aligned}$	
Na	Mg												\mathbf{A}	Si	P	S	Cl	Ar	
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948	
$\begin{gathered} \hline \text { potassium } \\ 19 \end{gathered}$	$\begin{gathered} \hline \text { calcium } \\ 20 \end{gathered}$		$\begin{gathered} \hline \text { scandium } \\ 21 \end{gathered}$	$\begin{aligned} & \text { titanium } \\ & 22 \end{aligned}$	vanadium 23	chromium 24	$\begin{array}{c\|} \hline \text { manganese } \\ 25 \end{array}$	$\begin{gathered} \text { iron } \\ 26 \end{gathered}$	$\begin{aligned} & \text { cobalt } \\ & 27 \end{aligned}$	$\begin{gathered} \text { nickel } \\ 28 \end{gathered}$	$\begin{aligned} & \text { copper } \\ & 29 \end{aligned}$	$\begin{aligned} & \text { zinc } \\ & 30 \end{aligned}$	$\begin{aligned} & \text { gallium } \\ & 31 \end{aligned}$	$\begin{aligned} & \text { germanium } \\ & 32 \end{aligned}$	$\begin{aligned} & \text { arsenic } \\ & 33 \end{aligned}$	$\begin{gathered} \text { selenium } \\ 34 \end{gathered}$	$\begin{gathered} \hline \text { bromine } \\ 35 \end{gathered}$	krypton 36	
K	Ca		SC	TI		Cr	$\mathrm{M} \cap$	Fe	CO	$\mathbf{N i}$	Cu	$Z n$	Ga	Ge	AS	Se			
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80	
$\begin{aligned} & \text { rubidium } \\ & 37 \end{aligned}$	$\begin{gathered} \text { strontium } \\ 38 \end{gathered}$		$\begin{gathered} \text { yttrium } \\ 39 \end{gathered}$	$\begin{gathered} \text { zirconium } \\ 40 \end{gathered}$	$\begin{gathered} \text { niobium } \\ 41 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { molybdenum } \\ 42 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { technetium } \\ & 43 \end{aligned}$	$\begin{array}{c\|} \hline \text { ruthenium } \\ 44 \end{array}$	$\begin{gathered} \text { rhodium } \\ 45 \end{gathered}$	$\begin{gathered} \text { palladium } \\ 46 \end{gathered}$	$\begin{gathered} \text { silver } \\ 47 \end{gathered}$	cadmium 48	$\begin{gathered} \text { indium } \\ 49 \end{gathered}$	$\begin{aligned} & \text { tin } \\ & 50 \end{aligned}$	$\begin{aligned} & \text { antimony } \\ & 51 \end{aligned}$	$\begin{aligned} & \text { tellurium } \\ & 52 \end{aligned}$	$\begin{gathered} \text { iodine } \\ 53 \end{gathered}$	$\begin{gathered} \text { xenon } \\ 54 \end{gathered}$	
Ro	Sr		Y	Zr	Nb	MO	TC	RU	$R h$	Pd	$A g$	Cd	$1 \cap$	$S n$	Sb		$\\|$	$\mathbf{X e}$	
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29	
$\begin{gathered} \text { caesium } \\ 55 \end{gathered}$	$\begin{gathered} \text { barium } \\ 56 \end{gathered}$	57-70	$\begin{aligned} & \text { lutetium } \\ & 71 \end{aligned}$	$\begin{gathered} \text { hafnium } \\ 72 \end{gathered}$	$\begin{array}{c\|} \hline \text { tantalum } \\ 73 \end{array}$	tungsten 74	$\begin{aligned} & \text { rhenium } \\ & 75 \end{aligned}$	osmium 76	$\begin{aligned} & \text { iridium } \\ & 77 \end{aligned}$	$\begin{aligned} & \text { platinum } \\ & 78 \end{aligned}$	$\begin{aligned} & \text { gold } \\ & 79 \end{aligned}$	$\begin{aligned} & \text { mercury } \\ & 80 \end{aligned}$	$\begin{gathered} \text { thallium } \\ 81 \end{gathered}$	$\begin{aligned} & \text { leed } \\ & 82 \end{aligned}$	$\begin{aligned} & \text { bismuth } \\ & 83 \end{aligned}$	$\begin{array}{c\|} \hline \text { polonium } \\ 84 \end{array}$	$\begin{gathered} \hline \text { astatine } \\ 85 \end{gathered}$	$\begin{gathered} \text { radon } \\ 86 \end{gathered}$	
CS	$8 a$	*	LU	Hf	Ta	\mathbf{M}	Re	Os	Ir	$P t$	AU	Hg	$T \\|$	Pb	$B i$	P_{0}	$A t$	Rn	
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]	
$\begin{aligned} & \text { francium } \\ & 87 \end{aligned}$	$\begin{gathered} \hline \text { radium } \\ 88 \end{gathered}$	89-102	$\begin{gathered} \hline \text { lawrencium } \\ 103 \end{gathered}$	rutherfordium 104	$\begin{gathered} \hline \text { dubnium } \\ 105 \end{gathered}$	$\begin{array}{c\|} \hline \text { seaborgium } \\ 106 \end{array}$	$\begin{gathered} \text { bohrium } \\ 107 \end{gathered}$	$\begin{aligned} & \text { hassium } \\ & 108 \end{aligned}$	$\begin{gathered} \hline \text { meitnerium } \\ 109 \end{gathered}$	$\begin{gathered} \hline \text { ununnilium } \\ 110 \end{gathered}$	$\begin{gathered} \hline \text { unununium } \\ 111 \end{gathered}$	$\begin{array}{c\|} \hline \text { ununbium } \\ 112 \end{array}$		$\begin{array}{\|c\|} \hline \text { ununquadium } \\ 114 \\ \hline \end{array}$					
Er	$P a$	* *	$L r$	Rf	Db	Sg	$3 h$	HS	Mt	Uun	UuU	Uub		Uuq					
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]					

*Lanthanide series	lanthanum	${ }^{\text {cerium }}$	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
	57	58	59	60	61	62	63	64	65	66	67	68	69	70
	La	Ce	Pr	Nd	PMn	Sm	EU	Gd	Tb	Dy	1 HO	Er	TM	Yb
**Actinide series	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	$\begin{gathered} \text { actinium } \\ 89 \end{gathered}$	$\begin{gathered} \text { thorium } \\ 90 \end{gathered}$	$\begin{array}{c\|} \hline \text { protactinium } \\ 91 \end{array}$	$\begin{gathered} \text { uranium } \\ 92 \end{gathered}$	$\begin{array}{c\|} \hline \text { neptunium } \\ 93 \end{array}$	plutonium 94	$\begin{aligned} & \hline \text { americium } \\ & 95 \end{aligned}$	$\begin{gathered} \text { curium } \\ 96 \end{gathered}$	$\begin{aligned} & \hline \text { berkelium } \\ & 97 \end{aligned}$	$\begin{aligned} & \text { californium } \\ & 98 \end{aligned}$	$\begin{gathered} \hline \text { einsteinium } \\ 99 \end{gathered}$	$\begin{gathered} \text { fermium } \\ 100 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { mendelevium } \\ 101 \end{array}$	$\begin{gathered} \hline \text { nobelium } \\ 102 \end{gathered}$
	$A C$				NO	PU	AMn	Cm	BK	Cf	ES	FMn	Mc	NO
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

